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UPPER BOUNDS FOR PERMANENTS 
O F  (1, - 1 ) - M A T R I C E S  

BY 

NORBERT SEIFTER 

ABSTRACT 

Let 1). denote the set of all n x n (1, - 1)-matrices. In 1974 E. T. H. Wang 
posed the following problem: Is there a decent upper bound for I per A I when 
A ~ ~ .  is nonsingular? We recently conjectured that the best possible bound is 
the permanent of the matrix with exactly n -  1 negative entries in the main 
diagonal, and affirmed that conjecture by the study of a large class of matrices in 
l~.. Here we prove that this conjecture also holds for another large class of 
(1, - 1)-matrices which are all nonsingular. We also give an upper bound for the 
permanents of a class of matrices in l-l, which are not all regular. 

I. Introduction. Preliminaries 

Let 1). denote the set of all n x n (1, - 1)-matrices and let 1). CI) .  denote the 

set of all regular matrices in 1).. 

Two matrices A, B E ~ .  are equivalent, A - B, if B can be obtained from A 

by a sequence of the following operations: 

(1) interchanging any two rows or columns; 

(2) transposition; 

(3) negating any row or column. 

Clearly, - is an equivalence relation and A - B  implies 

]pe rA I = Ipe rB  1. 

As Wang showed in [4], the converse is not true. 

Obviously, the maximal permanent in IL is n !, but the maximal permanent in 

1~. is unknown in general (E. T. H. Wang asked for it in [4]). In [2] we 

conjectured an upper bound and proved that our conjecture holds for a large 

class of matrices. Here we prove the same for another large class of regular 

matrices (Theorem 1). We also give an upper bound for the permanents of a 

large class of matrices which are not all regular (Theorem 2). Unfortunately the 
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upper bound of Theorem 2 is higher than that of Theorem 1 and hence we could 

not prove that our conjecture also holds for the regular matrices which are in the 

class of (1, -1)-matrices considered in Theorem 2. 

To formulate our results we need the following notations. 

Let C(n,  m)  = (c~j), 0 <= m <= n, denote the n x n matrix with 

ckJ= f - 1  for n - m < k = j < - _ n ,  

1 otherwise. 

D(n, m), 0<= m <= n, is the set of those n x n m a t r i c e s  A = (akj) which are 

defined by 

- 1  

akj = - 1  or 1 
1 

for n - m < k = j < - n ,  

for n - m < k  <j<=n,  

otherwise. 

Clearly, the ( n -  m)-th row of A E D(n ,  m)  contains only positive entries. 

Now, D'(n,  m )  denotes the set of all n x n (1, - 1)-matrices which are defined as 

the matrices of D(n ,  m )  but with an arbitrary (n - m ) - t h  row. 

Let A be an n x n matrix. Then A ( i ,  . . . . .  i, [ j , , . . . , j , )  denotes the (n - r ) •  

(n - s )  submatrix which we obtain by deleting the L-th . . . . .  i,-th rows and the 

jt-th . . . . .  j~-th columns of A. 

The following two lemmas were proved in [2]. 

LEMMA 1. 

[ 'per C ( n , m )  = (n - m - 1)per C(n  - 1, m - 1)+(m - 1)per C(n  - 1, m - 2 )  

(4) ~ for all n >- 2 and for all 2 <= m <= n, 

I .perC(n ,  1 ) = ( n  - 2 ) ( n  -1) !  for all n _>-2; 

[ per C(n,  m )  = (n - m)per  C(n  - 1, m ) +  m per C ( n -  1 ,m  - 1) 

(5) ~ for all n >-_ 2 and for all l <= m <= n - 1 ,  
! 

[.per C(n ,0 )=  n! for all n >=2. 

LEMMA 2. 

(6) per C(n,  m ) > 0 for all n >= 4 and for all 0 <= m <-_ n. 

(7) p e r C ( n , m ) < p e r C ( n , m - 1 )  f o r a l l n > = 5 a n d f o r a l l l < = m < = n .  

The next lemma is due to H. Perfect [3]. 

LEMMA 3. The number of positive products in the permanent  expansion 
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n 

E 1-Ia, ,,I 
o" i = 1  

of an n x n (1, - 1)-matrix A is divisible by 2"-'-tJ~ 

We are now able to state and prove our results. 

2. Upper bounds 

In [2] we conjectured the following upper bounds for the permanents of 

regular (1, - 1)-matrices. 

CONJECTURE 1. Let A ~ , ,  n > 5. Then 

(8) I per A [ ~ per C(n, n - 1) 

where equality holds iff A ~ C(n, n -  1). 

If A ~ , ,  n _->6, with A ; z  C(n, n - 1) then 

(9) [ per A I =< per C(n, n). 

The following Theorem shows that (8) holds for a large class of regular 

matrices. 

THEOREM 1. L e t A E D ( n , m ) ,  n=>4, l < = m < = n - 1 .  Then 

(10) [per A t =< per C(n, m). 

Let A E D'(n, m), n >->_4, 1 <= m <= n - 2 .  Then 

(11) I per a I_- < per C(n, m). 

PROOF. For n = 4 and n = 5 the assertions are checked by detailed discus- 

sions of all possible matrices, which can be done within a tolerable amount of 

time, using a computer. 

We now use double induction on n and assume that (10) and (11) hold for all 

n <=k, k >=6. 

Case 1. Let A E D ( k , m ) o r  A E D ' ( k , m ) ,  l < = m < = k - 2 .  

-1 1 

1 1 

A =  [ 
~  ~ 

_1 1 

" ' "  1 

" ~  ~ 1 

•  

1 - 1  •  

�9 . .  1 - 1  
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We expand A by the ( k - m ) - t h  row. Clearly all matrices A ( k - r n l j ) E  

D ( k  - 1, m)  for  all 1 -<j  -< k - m. Now we consider  the matr ices A ( k  - m l i) 

for  all k - m  + 1 - < i =  < k. We first in terchange the ( i - 1 ) - t h  row and the 

(i - 2 ) - t h  row of A (k - rn l i). Then  we in terchange the new (i - 2 ) - t h  row with 

the (i - 3)-th row, etc., until i - r = k - m - 1 for  some r = 1. Hence  there  is no 

in terchange of rows if i = k - m + 1 since the (k - m + 1)-th row of A becomes  

the (k - m)- th  row of A ( k  - m I i); there  is exactly one in terchange of rows if 

i = k - rn + 2 ,  etc. Now the matrices we obta ined  from the A ( k  - m I i) by those 

interchanges are in D ' ( k -  1, m -  1). Hence ,  by induct ion hypothesis  

I p e r A ( k - m l j ) l < = p e r C ( k - l , m )  f o ra l l l  < = j < = k - m  

and 

I = < I p e r A ( k - r n  i ) l < p e r C ( k - l ,  r n - 1 )  f o r a l l k - m + l < = i = k .  

Now, by expansion and L e m m a  1, formula  (5), we get 

I I p e r A  I=  a , ~ _ , , , , p e r A ( k - m ] s )  < - _ E l p e r A ( k - m l s ) l  
s = l  s = l  

< (k - m ) p e r  C(k  - 1, m ) +  rn per  C(k  - 1, m - 1) = per  C(k, rn). 

Case 2. Let A E D ( k , m ) ,  r e = k - 1 .  
Now we expand a by the second row. Clearly,  A(211)=A(212) and 

analogous  to Case 1 we can show that  all A (2 ] i), 3 _-< i =< k, are equivalent  to 

matr ices of D ' ( k - l , k - 3 ) .  Hence  by induct ion hypothesis  and L e m m a  1, 

formula  (6), we get 

I p e r A  I = 

< 
k 

~, I p e r A ( 2 1 s ) l < = ( k -  2)pe r  C ( k - 1 ,  k - 3 )  
$ = 3  

= per  C(k, k - 1). 

In the second sum s only runs f rom 3 to k because per  A (2[ 1) = per  A (212) and 

a2~ = 1, a22 = - 1 hold. [ ]  

The  next  Proposi t ion shows that  T h e o r e m  1 affirms parts  of Conjec tu re  1 for  a 

large class of regular  (1, - 1 ) -ma t r i ce s .  
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PROPOSITION 1. Let  A E D ( n ,  n - 1). Then A is regular with 

(12) det A = ( - 2)"-'. 

PROOF. If we subtract the first row of A (all entries in this row are equal to 

+ 1) from all other rows we get the matrix X = (xij), where 

0. for l < = j < i < - n ,  

x~j = - 2  for 2 < i  = j < n ,  

1 for i = j = 1, 

for which det X = det A = ( - 2) "-1 clearly holds. [] 

Unfortunately (10) and (11) do not hold for m --n  and m = n -  1, respec- 

tively. For example, the following matrix A E D ( n , n )  is equivalent to 

C(n,  n - 2) and thus has a permanent greater than per C(n,  n - 1) by Lemma 2, 

A = 

inequality (7): 
m 

- 1  - 1  - 1  . . . . . . .  1 1 

1 - 1  1 . . . . . .  1 - 1  

1 1 - 1  1 . . .  1 - 1  

1 1 . . . . . . . . . .  1 - 1  

1 1 1 - 1  

This, and a detailed discussion of all matrices of f~5, immediately leads to the 

conjecture that per C(n,  n - 2 )  is the best upper bound for the matrices of 

D'(n ,  n - 1) (D(n ,  n )  C D ' (n ,  n - 1)). As the next theorem shows, this conjecture 

holds. 

THEOREM 2. Let  A E D ' (n ,  n - 1), n -> 4. Then 

(13) I per A J --< per C(n,  n - 2). 

For n >= 6 equality cannot  hold if at least one of  the following conditions is 

satisfied: 

(i) a .  ~ at2; 
(ii) sgn (per A (1 [1)) ~ sgn (per A (1 [2)); 

(iii) p e r A ( l l i  ) = 0  for at least one i E{1,2}. 

PROOF. For n = 4  and n = 5  the result is again proved by a detailed 

discussion of all possible matrices. We now assume that (13) holds for all n < k, 

k -> 6, and use induction on n. 
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Let A @ D ' ( k ,  k - 1). 

A = 

+1 
1 - 1  

1 1 - 1  

1 1 1 - 1  -+1 

1 1 1 . . .  1 - 1  

We expand A by the first row and analogous to Theorem 1, Case 1, we can show 

that the A (1 [ j), 1 =< j _-< k, are equivalent to matrices of D' (k  - 1, k - 2). 
Hence by induction hypothesis 

[ p e r a ( l [ j ) ]  =<per C ( k  - 1, k - 3 )  for all j. (14) 

Since 

per C ( k ,  k - 2) = (k - 2) per C ( k  - 1, k - 3) + 2 per C ( k  - 1, k - 2) 

we need more than inequality (14) to prove our result. Therefore we consider 

X = A (1 [ 1) and Y = A (1 [2) more precisely. 

C a s e  1. sgn (per X ) / ' s g n  (per Y). 

Only x . / y ~ j ,  otherwise X and Y have the same entries. 
So X ( l [ 1 ) - -  V( l [1)  and obviously 

X ( I [ 1 ) =  Y ( I [ 1 ) E D ' ( k - 2 ,  k - 3 )  

also holds. Hence 

I perX(1 [1)[ = ]per Y(1 [1)]_-<per C ( k - 2 ,  k - 4 )  

by induction hypothesis. Since sgn (per X) ~ sgn (per Y) this implies 

[ p e r X [ + [ p e r  Y[<_-2per C ( k  - 2 ,  k - 4 ) .  

As, by Lemma 1, formula (4), 

per C ( k  - 1, k - 2) = (k - 3)per C ( k  - 2, k - 4) 

the inequality 

(15) 2per C ( k  - 2, k - 4) < per C ( k  - 1, k - 2) 

holds for all k =< 6. By (14) we get 
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k 
Jpcr A(1 [ s ) l  ~ (k - 2)per C(k - 1 , k  - 3 )  

s=3 

and hence together with (5) 

IperA I < p e r C ( k -  1,k - 2 ) + ( k  - 2 ) p e r C ( k  - 1 , k - 3 ) < p e r C ( k , k - 2 ) .  

Case 2. If either per X = O or per Y = O we get the inequality of Case l ; if 

per X = per Y = 0 then our result obviously holds. 

Case 3. sgn (per X) = sgn (per Y). 

We again expand X and Y by the first row. 

X = 

r ] 
1 - 1  
1 I - I  +-1 

i 1 1 . . .  1 - 1  i! l -1  

Y =  1 - 1  +_1 

1 . . .  1 - 

Obviously, the submatrices X(l  [ i ) =  Y(1 [/) are equivalent to matrices of 

D'(k - 2 ,  k - 3 )  for all 1 _-<j = k - 2  and X ( l l k  - 1) = Y ( l l k  - 1) are equival- 

ent to a matrix in D(k - 2 ,  k - 3 ) .  

Now, if a,, r a~2 then 

la,,per X + a,,_per Y l =  2lper X( l  [1)l<=2perC(k - 2 ,  k - 4 )  

holds since X and Y have equal entries with the exception x~ ~ y~. Hence, as in 

Case 1, we get 

] per A I < per C(k, k - 2). 

If a,, = a,e then 

la,LperX +a~:per YI = 2 
I k i 

x,. perx(lls)  lperX(l[s)[ 

< 2(k - 3)per C(k - 2, k - 4) + 2per C(k - 2, k - 3) 

= per C(k - 1,k - 2 ) + p e r  C ( k -  1,k - 3 )  

since X ( l l l  ) = Y(II I ) ,  x,~ ~ y,, and X ( l l k  - 1)--- Y ( l [ k  - 1) are equivalent to 

a matrix of D(k - 2 ,  k - 3 ) .  

Obviously, A(1 [k) is equivalent to a matrix of D ( k -  l, k - 2 )  and hence 
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[perA(1  [ k ) [ =  < p e r  C ( k -  1, k - 2 )  

by Theorem 1. 

So 

aperal=l a' , 
k 

< = l a , l p e r A ( l l l ) + a l 2 p e r A ( l l 2 ) J +  ff'~ IperA(1  [s)[ 
s = 3  

-< 2per C ( k  - 1, k - 2) + (k - 2)per C ( k  - 1, k - 3) = per C ( k ,  k - 2). [] 

The next lemma, due to H. Perfect [3], gives an explicit formula for our upper 

bounds. 

LEMMA 4. 

per C ( n ,  m) = n! - 2 ~ ( -  1)k-12 k-' ( n  - k ) ! m !  
k=l ( m - k ) ! k !  

for  n >= 2 a n d  all  O <- m <= n. 

In Proposition 1 we proved that all matrices of D ( n ,  n - 1) are regular. Now 

we can ask for the converse: How many regular n x n ( 1 , -  1)-matrices are 

equivalent to a matrix of D ( n ,  n - 1) or D ' ( n ,  n - 1) and thus have permanents 

bounded by Theorem 1 or Theorem 2.'? 

This question can be answered for n = 3,4 and 5. 

PROPOSITION 2. A l l  matr ices  o f  ~ ,  are eq u i va l en t  to matr ices  o l D ( n ,  n - 1) or 

D ' ( n ,  n - 1) for  al l  n, 3 < n <= 5. 

PROOF. A detailed discussion of all matrices of 1)3, ~'~4 and 1)5 leads to the sets 

1~3, 1~4 and ~5 as they are listed below (the sets ~3, 1~4 and 1"~5 are clearly 

presented modulo - ) .  

f i 3 :  - -  1 

1 - 

fi4: Ii 11 il Ii 11 i L -11111 - 1  - 1  - 1  1 1 - 1  1 

1 1 1 - 1  1 1 - 1  

1 1 - 1 1 - 1 1 1 - 
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fis: L1111il Ii11111 - 1  1 1 - 1  1 1 

1 - 1  1 1 - 1  1 

1 1 - 1  1 1 - 1  

1 1 1 - 1 1 1 - 

I i  1 

- 1  

1 

1 

1 

1 1 

- 1  1 

- 1  1 

1 - 1  

1 1 1 
I 

1 

-1 

1 

1 

1 

1 

111i] - 1  1 1 - 

1 - 1  - 1  

1 1 1 

1 1 1 

1 1 

- 1  - 1  

1 - 1  

1 1 

1 1 

1 1 

1 - 1  - 

1 1 - 

1 1 

1 1 

,1!] If--1 1 - 1  - 1 

1 1 

1 1 

1 1 1- 

1 1 1 

1 - 1  1 

1 - 1  1 

1 1 - 1  1,lj 
1 1 - ~  

1 1 

1 - 1  

1 1 [] 

We could not prove a result like Proposition 3 for n => 6, but we think that it also 

holds for larger n. 

CONJECTURE 2. All matrices of ~ ,  are equivalent to matrices of D (n, n - 1) 

or D ' ( n , n - 1 )  for all n ~ 3 .  

At last we present a Proposition which shows that for n = 6 the second part of 

Conjecture 1 immediately follows if the first part holds. 

PROPOSITION 3. Let A E ~6. If  

[ per A [ < per C(6, 5) 

then 

I per A I =< per C(6, 6) 

also holds. 

PROOF. By the formulae of Lemma 1 or Lemma 4 it is easy to derive that 

per C(6, 5) = 128 

and 

per C(6,6) = 112. 
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Now suppose 

I perA I < 128. 

As we have shown in [1] per B is divisible by 2 "-l-t'~ for all B ~ ~ , .  

So, if our assertion does not hold, then I perA I= 120. But I perA I = 120 
implies that the number of positive products in the permanent expansion of A is 
equal to 420 or 300. In both cases the number of positive products is not divisible 
by 8, a contradiction to Lemma 3. Hence I per A I =< 112 = per C(6, 6). [] 
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