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UPPER BOUNDS FOR PERMANENTS
OF (1, —1)-MATRICES

BY
NORBERT SEIFTER

ABSTRACT

Let Q, denote the set of all n X n (1, — 1)-matrices. In 1974 E. T. H. Wang
posed the following problem: Is there a decent upper bound for | per A | when
A €1}, is nonsingular? We recently conjectured that the best possible bound is
the permanent of the matrix with exactly n —1 negative entries in the main
diagonal, and affirmed that conjecture by the study of a large class of matrices in
Q,. Here we prove that this conjecture also holds for another large class of
(1, - 1)-matrices which are all nonsingular. We also give an upper bound for the
permanents of a class of matrices in (), which are not all regular.

1. Introduction. Preliminaries

Let Q, denote the set of all n X n (1, — 1)-matrices and let {, CQ, denote the
set of all regular matrices in Q,.

Two matrices A, B €(}, are equivalent, A ~ B, if B can be obtained from A
by a sequence of the following operations:

(1) interchanging any two rows or columns;

(2) transposition;

(3) negating any row or column.
Clearly, ~ is an equivalence relation and A ~ B implies

|per A |=|perB|.

As Wang showed in [4], the converse is not true.

Obviously, the maximal permanent in (), is n!, but the maximal permanent in
Q. is unknown in general (E. T. H. Wang asked for it in [4]). In [2] we
conjectured an upper bound and proved that our conjecture holds for a large
class of matrices. Here we prove the same for another large class of regular
matrices (Theorem 1). We also give an upper bound for the permanents of a

large class of matrices which are not all regular (Theorem 2). Unfortunately the
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upper bound of Theorem 2 is higher than that of Theorem 1 and hence we could
not prove that our conjecture also holds for the regular matrices which are in the
class of (1, —1)-matrices considered in Theorem 2.

To formulate our results we need the following notations.

Let C(n,m)=(c;), 0= m = n, denote the n X n matrix with

-1 for n—m<k=j=n,
Cxj =

1 otherwise.

D(n,m), 0=m =n, is the set of those n X n matrices A = (a,;) which are
defined by

-1 forn—-m<k=j=n,
a; =4 —lorl forn—-m<k<j=n,
1 otherwise.

Clearly, the (n — m)-th row of A € D(n, m) contains only positive entries.
Now, D’(n, m) denotes the set of all n X n (1, — 1)-matrices which are defined as
the matrices of D(n, m) but with an arbitrary (n — m)-th row.

Let A be an n X n matrix. Then A(i\,..., |j.,...,j,) denotes the (n —r) x
(n — s) submatrix which we obtain by deleting the i,-th,..., i -th rows and the
ji-th, ..., j-th columns of A.

The following two lemmas were proved in [2].

Lemma 1.
perC(n,m)=(n—-—m—1)perC(n—1,m—-1)+(m—1)perC(n—1,m-2)
(4){ forall n =2 and for all 2= m = n,
perC(n,1)=(n-2)(n —1)! for all n=2;

perC(n,m)=(n—-—m)perC(n—1,m)+mperC(n—1,m-1)
(5) foralln=2 and forall 1=m=n-1,

per C(n,0)=n! for all n = 2.
LEMMA 2.
6) per C(n,m)>0  foralln =4 and forall0=m =n.
(7) perC(nym)<perC(nm—1) foralln=5andforalll=m=n.
The next lemma is due to H. Perfect [3].

LEMMA 3. The number of positive products in the permanent expansion
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n
2 11 Qs (i)

a1

of an n X n (1, — 1)-matrix A is divisible by 2"7'7!&"),

We are now able to state and prove our results.

2. Upper bounds

In (2] we conjectured the following upper bounds for the permanents of
regular (1, — 1)-matrices.

ConjECTURE 1. Let A €Q,, n =5. Then
(8) |per A |=perC(n,n—1)
where equality holds iff A ~C(n,n —1).
If A€, nz6, with A% C(n,n—1) then
) |per A |=per C(n,n).
The following Theorem shows that (8) holds for a large class of regular
matrices.

THEOREM 1. Let A€D(n,m), nz4, 1=m=n-1. Then
(10) |per A | = per C(n, m).

Let AED'(n,m), nz4, 1=m=n-2. Then
(1) |per A | = per C(n, m).

Proor. For n =4 and n =5 the assertions are checked by detailed discus-
sions of all possible matrices, which can be done within a tolerable amount of
time, using a computer.

We now use double induction on n and assume that (10) and (11) hold for all
n=k, k=6

Case 1. let A€eD(k,m)or AEDk,m), l=m=k-2.

1 1 . e 1
1 1 e 1
A= || +1 |
T -1 -1 =1
.11 - 1 -1
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We expand A by the (k—m)-th row. Clearly all matrices A(k—m | e
D(k—1,m) for all 1 =j =k — m. Now we consider the matrices A(k —m I i)
for all k—m+1=i=k We first interchange the (i —1)-th row and the
(i—2)-throwof A(k—m , i). Then we interchange the new (i —2)-th row with
the (i —3)-th row, etc., until i —r = k —m — 1 for some r = 1. Hence there is no
interchange of rows if { = k —m + 1 since the (k — m + 1)-th row of A becomes
the (k — m)-th row of A(k —m ) i); there is exactly one interchange of rows if
i = k —m +2, etc. Now the matrices we obtained from the A (k — m l i) by those
interchanges are in D'(k —1, m —1). Hence, by induction hypothesis

|per Ak —m|j)|=perCk—1,m) foralll=j=k-m
and

|per A(k —m|i)|SperC(k—1,m~1) forallk—-m+1=i=k

Now, by expansion and Lemma 1, formula (5), we get

|perA|='§a(k_m)sperA(k—m ls) égllperA('k—mls)]

s=(k-m)perC(k—1,m)+mper C(k —1,m ~1)=per C(k, m).

Case 2. Let A€D(k,m), m=k—1.

Now we expand A by the second row. Clearly, A(2 I 1= A(2|2) and
analogous to Case 1 we can show that all A(2| i), 3=i =k, are equivalent to
matrices of D'(k — 1,k —3). Hence by induction hypothesis and Lemma 1,
formula (6), we get

k
2 a per A2 l s)
s=1

|per A | =

k
éz Iper AQ|s)|=(k~2)per C(k -1,k —3)

=per C(k, k —1).

In the second sum s only runs from 3 to k because per A (2| D=perAQ2 l 2) and
an = 1, Ay = — 1 hold. I:l

The next Proposition shows that Theorem 1 affirms parts of Conjecture 1 for a
large class of regular (1, —1)-matrices.
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PropoSITION 1. Let A €D(n,n—1). Then A is regular with
(12) detA =(—2)""".

ProoF. If we subtract the first row of A (all entries in this row are equal to
+1) from all other rows we get the matrix X = (x;), where

-2 for2=i=j=n,

0. forlsj<i=n,
1 fori=j=1,

for which det X = det A = (—2)""' clearly holds. O

Unfortunately (10) and (11) do not hold for m =n and m = n —1, respec-
tively. For example, the following matrix A € D(n,n) is equivalent to
C(n, n —2) and thus has a permanent greater than per C(n,n —1) by Lemma 2,
inequality (7):

1 -1 —1 -+ oo —1 1]

1 -1 1 eee oen 1 -1

A= 1 1 -1 1 1 -1
1 1 oo e e =1 41

| 1 1 1 -1

This, and a detailed discussion of all matrices of (};, immediately leads to the
conjecture that per C(n,n —2) is the best upper bound for the matrices of
D'(n,n —1)(D(n,n)CD’(n,n —1)). As the next theorem shows, this conjecture
holds.

THEOREM 2. Let A€ D'(n,n—1), n=4. Then

(13) |per A | = per C(n,n —2).

For n 26 equality cannot hold if at least one of the following conditions is
satisfied :

(1) an # aiz;

(ii) sgn (per A (1|1))#sgn (per A(1]|2));
(iii) per A(1 I i)=0 for at least one i €{1,2}.

PrOOF. For n=4 and n =35 the result is again proved by a detailed
discussion of all possible matrices. We now assume that (13) holds for all n <k,
k = 6, and use induction on n.
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Let A €D'(k, k —1).

(11 11—

-

We expand A by the first row and analogous to Theorem 1, Case 1, we can show
that the A(l |j), 1 =j =k, are equivalent to matrices of D'(k ~ 1,k —2).
Hence by induction hypothesis

(14) |per A(1|j)|=per C(k ~1,k—3)  forallj.
Since
perC(k,k —2)=(k—2)perC(k =1,k =3)+2per C(k -1,k —2)
we need more than inequality (14) to prove our result. Therefore we consider
X=A(1]1)and Y = A(1|2) more precisely.

Case 1. sgn(per X)#sgn(per Y).
Only x,, # y.), otherwise X and Y have the same entries.
So X(1|1)= Y(1|1) and obviously

X(1|h)=Y(Q|)ED (k -2,k -3)
also holds. Hence
|per X(1]1)] =|per Y(1|1)| = per C(k —2,k —4)

by induction hypothesis. Since sgn (per X) # sgn (per Y) this implies

|per X |+|per Y|=2per C(k -2,k —4).
As, by Lemma 1, formula (4),

per C(k —1,k =2)=(k ~3)per C(k =2,k —4)

the inequality
15) 2per C(k —2, k —4)<per C(k — 1,k —2)

holds for all k =6. By (14) we get
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ilpcrA(lls)lé(k—Z)perC(k—l,k—S)

and hence together with (5)
|perA|<perC(k — 1.k —2)+(k —2)per C(k — 1,k ~3)<per C(k, k —2).

Case 2. If either per X =0 or per Y =0 we get the inequality of Case 1; if
per X =per Y =0 then our result obviously holds.

Case 3. sgn(per X)=sgn(per Y).
We again expand X and Y by the first row.

f—l M

Obviously, the submatrices X(1 [j) =Y( |j) are equivalent to matrices of
D'(k -2,k =3)forall l=j=k-2and X(I | k—-1)=Y(l | k — 1) are equival-
ent to a matrix in D(k -2,k —3).

Now, if a,, # a,, then

[ay per X + anper Y | =2[per X(1]1)|=2per C(k =2,k —4)

holds since X and Y have equal entries with the exception x;, # yi,;. Hence, as in
Case 1, we get

|per A | <per C(k,k —2).

If a;; = a,, then

k1 k-1
la.lperX+a.zperYf=IZZx.xperX(lls) =23 |perX(1]s)|
s=2 Pp=y)

=2(k —3)perC(k =2,k —4)+2per C(k —2,k —3)
=perC(k —1,k =2)+perC(k — 1,k —3)
since X(1]1)= Y(1[1), x1 #ynand X(1| k = 1)= Y(1| k = 1) are equivalent to

a matrix of D(k —2,k —3).
Obviously, A(l l k) is equivalent to a matrix of D(k — 1,k —2) and hence
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|per A(1]| k)| =per C(k —1,k —2)

by Theorem 1.
So

k
|perA | = ' Y ai,perA(l]s)
s=1

k.
éla”perA(ll1)+a12perA(1|2)|+Z3 [per A(1|s)]

=2perC(k — 1,k —2)+(k =2)perC(k — 1,k —3)=per C(k,k —2). O

The next lemma, due to H. Perfect [3], gives an explicit formula for our upper
bounds.

LEMMA 4.

per C(n,m)=n! —Zkz:l (- 1)‘(_12’“1%

fornz2 and all 0=m =n.

In Proposition 1 we proved that all matrices of D(n, n — 1) are regular. Now
we can ask for the converse: How many regular n X n (1, — 1)-matrices are
equivalent to a matrix of D(n,n — 1) or D'(n, n — 1) and thus have permanents
bounded by Theorem 1 or Theorem 2?

This question can be answered for n =3,4 and 5.

PROPOSITION 2. All matrices of (1. are equivalent to matrices of D (n,n —1) or
D'(n,n—1) forall n,3=n <5.

PrOOF. A detailed discussion of all matrices of (), £}, and €); leads to the sets
s, . and Qs as they are listed below (the sets s, €, and Qs are clearly
presented modulo ~).

1 1
QO |1 -1 1
1 1 -1
1 1 1 1 1 1 1 1 -11 1 1
Qe |1 -1 -1 1 1 -1 1 1 1-1 1 1
1 1-1 1 1 1-1 1 11-1 1
1 1 1 -1 1 1 1-1 11 1-1
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Ml 1 1 1 1] -1 1 1 1 1] 11 1 1
1 -1 1 1 1 1-1 1 1 1 1-1 -1 1
Q: |1 1 -1 1 1 1 1 -1 1 1 1 1-1 1
1 1 1-1 1 1 1 1-1 1 11 1-1
1 1 1 1-1 |11 1 1-1] [11 1 1
1 1 1 1 11 [1 1 1 1 1]
1 -1 1 1-1 1-1-1 1 1
1 1 -1-1 1 1 1 -1-1 1
1 1 1-1 1 1 1 1-1 1
11 1 1-1] L1 1 1 1 -1]
T 1 1 1 1] [-1-1 1 1 1]
1 -1-1 1 1 1-1 1 1-1
1 1-1-1-1 1 1-1 1 1
1 1 1-1 1 1 1 1-1 1
1 1t 1 1-1 [t 1 1 1-1]

77
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g

We could not prove a result like Proposition 3 for n = 6, but we think that it also

holds for larger n.

CONJECTURE 2. All matrices of ), are equivalent to matrices of D(n,n — 1)

or D'(n,n~—1) for all n=3.

At last we present a Proposition which shows that for n = 6 the second part of

Conjecture 1 immediately follows if the first part holds.
ProOPOSITION 3. Let A €. If
| per A | < per C(6,5)
then
|per A | = per C(6,6)
also holds.
ProoF. By the formulae of Lemma 1 or Lemma 4 it is easy to derive that
per C(6,5)=128
and

per C(6,6)=112.
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Now suppose
|per A | <128.

As we have shown in [1] per B is divisible by 2" """ for all B € Q..

So, if our assertion does not hold, then [per A |=120. But |per A | =120
implies that the number of positive products in the permanent expansion of A is
equal to 420 or 300. In both cases the number of positive products is not divisible
by 8, a contradiction to Lemma 3. Hence | per A | = 112 = per C(6, 6). O
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